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1 Introduction

In most definitions of learning, a learner sees a sequence of values of an unknown

function at random points, and the goal is to choose an accurate approximation

to that function, with high probability. We already showed that for binary valued

functions, Vapnik Chervonenkis (VC)-dimension of a function class characterizes

its learnability in the sense that a function class is learnable if and only if its VC

dimension is finite. Kearns and Schapire [2] introduced a generalization of the

VC dimension, which we call the fat-shattering function, and showed that a class

of probabilistic concepts is learnable only if the class has a finite fat-shattering

function. In this project, we consider the learnability of [0, 1]-valued function

classes. We show that a class of [0, 1]-valued functions is learnable from a finite

training sample with observation noise satisfying some mild conditions if and only

if the class has a finite fat-shattering function. The main goal is to show that

the finiteness of the fat-shattering function is necessary for learning. We also

consider small-sample learnability, for which the sample size is allowed to grow

only polynomially with the required performance parameters.

2 Definitions and Main Result

2.1 Classes of Noise Distributions

A function f is said to have bounded variation if there is a constant C > 0 such

that for every ordered sequence x0 < · · · < xn in R we have

n∑
k=1

|f(xk)− f(xk−1)| ≤ C

In that case, the total variation of f on R is

V (f) = sup{
n∑
k=1

|f(xk)− f(xk−1)| : x0 < · · · < xn}

Definition: An admissible noise distribution class D is a class of distributions on

R that satisfies

• Each distribution in D has zero mean and finite variance
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• Each distribution in D is absolutely continuous and its pdf has bounded

variation: there is a function v : R+ → R+, called the total variation func-

tion, such that if f is the pdf of a distribution in D with variance σ2, then

V (f) < v(σ).

If D also satisfies the following condition, we say it is a bounded addmissible dis-

tribution class.

• There is non-decreasing function s : R+ → R+, called the support function,

such that if D ∈ D with variance σ2, then the support of D is contained in

a closed interval of length s(σ).

If D is an admissible noise distribution, we say it is an almost-bounded admissible

distribution class.

• Each distribution D ∈ D has an even pdf and light tails: there are constants

s0 and c0 in R+ such that, for all distribution D ∈ D with variance σ2, and

all s > s0σ

D{η : |η| > s/2} ≤ c0e
−s/σ

2.2 The Learning Problem

Choose a set F of functions from X to [0, 1]. For m ∈ N, f ∈ F , x ∈ Xm and

η ∈ Rm, let

sam(x, η, f) = ((x1, f(x1) + η1), · · · , (xm, f(xm) + ηm)).

A deterministic learning algorithm is defined to be a mapping from ∪m(X × R)m

to [0, 1]X . A randomized learning algorithm L is a pair (A,PZ) where PZ is a

distribution on set Z and A is a mapping from ∪m(X × R)m × Zm to [0, 1]X . Given

a sample of length m the randomized algorithms chooses a sequence z ∈ Zm at

random from Pm
Z and passes it to the deteministic mapping A as a parameter .

For probability distribution P on X, f ∈ F and h : X → [0, 1] define

erP,f (h) =

∫
X

|h(x)− f(x)|dP (x).

Definition: Let D be a class of distributions on R. Choose 0 < ε, δ < 1 and σ > 0

and m ∈ N. We say a learning algorithm L = (A,PZ) (ε, δ, σ)-learns F from m
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examples with noise D if for all distributions P on X, all functions f ∈ F and all

distributions D ∈ D with variance σ2

Pm ×Dm × PZm{(x, η, z) : erP,f (A(sam(x, η, f), z)) ≥ ε} < δ

Similarly, L (ε, δ)-learns F from m examples withous noise if for all distributions

P on X and all functions f ∈ F

Pm × PZm{(x, z) : erP,f (A(sam(x, 0, f), z)) ≥ ε} < δ.

Function class F is learnable with noise D if there is a learning algorithm L

and a function m0 : (0, 1) × (0, 1) × R+ → N such that for all 0 < ε, δ < 1 for

all σ > 0 algorithm L (ε, δ, σ)-learns F from m0(ε, δ, σ) examples with noise D.

Function class F is small sample learnable with noise D if in addition the function

m0 is bounded above by a polynomial in 1/ε, 1/δ, and σ.

Choose x1, · · · , xd ∈ X. We say x1, · · · , xd ∈ X are γ-shattered by F if there

exists r ∈ [0, 1]d such that for each b ∈ {0, 1}d there is an f ∈ F (a witness) such

that for each i

f(xi)

{
≥ ri + γ if bi = 1

≤ ri − γ if bi = 0.

where γ is the width of shattering, [2]. A geometric interpretation of this definition

is to regard (r1, · · · , rd) as the origin of a coordinate system in d-dimensional

Euclidean space; Then F shatters x’s if the set {(f(x1), · · · , f(xd)) : f ∈ F}
intersects all 2d orthants of the coordinate system at least γ far away from origin.

For each γ, let fatF (γ) = max{d ∈ N : F γ-shatters some x1, · · ·xd} if such a

maximum exists, and ∞ otherwise. If fatF (γ) is finite for all γ we say F has a

finite fat-shattering function.

2.3 The Main Result

Theorem 1, [1]: Suppose F is a permissible class of [0, 1] valued functions defined

on X. If D is a bounded admissble distribution class then F is learnable with

observation noise D if and only if F has finite fat shattering function. If D is an

almost bounded admissible distrbution class then F is small sample learnable with

observation noise D if and only if there is a polynomial p that satisfies fatF (γ) <

p(1/γ) for all γ > 0.
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3 Lower Bound

In this section, we give a lower bound on the number of examples necessary to

learn a real-valued function class in the presence of observation noise.

3.1 Learnability With Noise Implies Quantization Learn-

ability

In this subsection, we try to relate the problem of learning a real valued function

class with observation noise to the problem of learning a quantized version of that

class without noise.

Definition: For α ∈ R+ define the quantization function

Qα(y) = αdy − α/2
α

e

For a set S ⊂ R, let Qα(S) = {Qα(y) : y ∈ S} for a function class F ∈ [0, 1]X , let

Qα(F ) be the set {Q ◦ f : f ∈ F} of Qα([0, 1]) valued functions defined on X.

We want to show that an algorithm that can learn a real-valued function class

with observation noise can be used to construct an algorithm that can learn a

quantized version of the function class to slightly worse accuracy and confidence

with the same number of examples, provided the quantization width is sufficiently

small. To do so, we need to prove the following lemma which will be useful later.

Lemma 1: Let D be an admissible noise distribution class with total variation

function v. Let σ > 0 and 0 < α < 1. Let D be a distribution in D with variance

σ2. Let η, ζ and ν be random variables and suppose that η and ν are distributed

according to D and ζ is distributed uniformly on [−α/2, α/2]

1. For any y ∈ [0, 1] if P1 is the distribution of y + η and P2 is the distribution

of Qα(y + η) + ζ, we have

dTV (P1, P2) ≤ αv(σ)

2. For any y ∈ [0, 1] if P3 is the distribution of Qα(y + η) and P4 is the distri-

bution of Qα(y) +Qα(ν) we have

dTV (P3, P4) ≤ αv(σ)
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Proof of Lemma 1: 1. Let p be the pdf of D. Thus, the pdf of y + η would be

p1(t) = p(t− y). You can easily show that the pdf of Qα(y + η) + ζ would be

p2(t) =
1

α

∫ Qα(t)+α/2

Qα(t)−α/2
p(x− y)dx.

So,

dTV (P1, P2) =

∫ +∞

−∞
|p1(x)− p2(x)|dx

=

∫ +∞

−∞
|p(x− y)− 1

α

∫ Qα(x)+α/2

Qα(x)−α/2
p(θ − y)dθ|dx

=

∫ α/2

−α/2

∞∑
n=−∞

|p(x− y + nα)− 1

α

∫ α/2

−α/2
p(θ − y + nα)dθ|dx

≤
∫ α/2

−α/2

∞∑
n=−∞

sup
z∈(−α/2,α/2)

|p(x− y + nα)− p(z − y + nα)|dx

≤ αv(σ)

Note that the mean value theorem is employed for the first inequality: ∃z1, z2 ∈
[−α/2, α/2] s.t.

p(z1 − y + nα) ≤ 1

α

∫ α/2

−α/2
p(θ − y + nα)dθ ≤ p(z2 − y + nα)

2. The distribution of Qα(y + η) is discrete, and satisfies

P3(t) =

∫ nα+α/2

nα−α/2
p(x− y)dx

if t = nα for some n ∈ Z, and P3(t) = 0 otherwise. Since v has distribution D, the

distribution P4 of the random variable Qα(y)+Qα(v) is also discrete, and satisfies,

P4(t) =

∫ nα+α/2

nα−α/2
p(x)dx
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if t = nα +Qα(y) for some n ∈ Z, and P4(t) = 0 otherwise. So,

dTV (P3, P4) =
∞∑

n=−∞

|P3(nα)− P4(nα)|

=
∞∑

n=−∞

|
∫ nα+α/2

nα−α/2
p(x− y)dx−

∫ nα+α/2

nα−α/2
p(x−Qα(y))dx|

≤
∫ α/2

−α/2

∞∑
n=−∞

|p(x− y + nα)− p(x−Qα(y) + nα)|dx

≤ αv(σ)

Lemma 2: Suppose F is a set of functions from X to [0, 1], D is an admissible

noise distribution class with total variation function v, A is a learning algorithm,

0 < ε, δ < 1, σ ∈ R+, m ∈ N. If the quantization width α ∈ R+ satisfies

α ≤ min(
δ

v(σ)m
, 2ε)

and A (ε, δ, σ)-learns F from m examples with noise D then there is a randomized

learning algorithm (C,PZ) that (2ε, 2δ)-learns Qα(F ) from m examples.

Proof of Lemma 2: We will describe the a randomized algorithm (C) that

is constructed from algorithm A and show that it (2ε, 2δ)-learns the quantized

function class Qα(F ) (see Figure 1). Fix a noise distribution D in D with variance

σ2, a function f ∈ F and a distribution P on X. Since A (ε, δ, σ)-learns F , we

have

Pm ×Dm{(x, η) : erP,f (A(sam(x, η, f))) ≥ ε} < δ

That is the probability that Algorithm A chooses a bad function is small. We will

show that this implies that the probability that algorithm C chooses a bad function

is also small, where the probability is over all x ∈ Xm and all values of the random

variables that algorithm C uses. Now, fix a sequence x = (x1, · · · , xm) ∈ Xm, and

define the events

E = {η ∈ Rm : erP,f (A(sam(x, η, f))) ≥ ε}

E1 = {y ∈ Rm : erP,f (A(x1, y1, · · · , xm, .ym)) ≥ ε}

that is E is the set of noise sequences that makes A chooses a bad function and

E1 is the corresponding set of y sequences.
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Figure 1: Learning algorithm for real-valued functions can be used to construct a

learning algorithm for quantized functions.

Clearly

Dm(E) = (
m∏
i=1

P1|xi)(E1)

where P1|xi is the distribution of f(xi) + η. Let ζ be a random variable with dis-

tribution Uα, where Uα is the uniform distribution on (−α/2, α/2). Let algorithm

B be the randomized algorithm that adds noise ζ to each y value it recieves and

passes the sequence to algorihm A . That is,

B(x1, y1, · · · , xm, ym) = A(x1, y1 + ζ1, · · · , xm, ym + ζm)

Let P2|xi be the distribution of Qα(f(xi)+η)+ζ. From lemma 1, dTV (P1|xi , P2|xi) ≤
αv(σ).

Lemma 3: If Pi and Qi are distributions on a set Y (i = 1, · · · ,m), and E is a

measurable subset of Y m, then

|(
m∏
i=1

Pi)(E)− (
m∏
i=1

Qi)(E)| ≤ 1

2

m∑
i=1

dTV (Pi, Qi)

Lemma 3 implies

(
m∏
i=1

P2|xi)(E1) ≤ Dm(E) +
mαv(σ)

2
≤ Dm(E) + δ/2

where the second inequality follows from the hypothesis that α ≤ δ/(mv(σ)). Let

P3|xi be the distribution of Qα(f(xi) + η) and let

E3 = {y ∈ Rm : E(erP,f (B(x1, y1, · · · , xm, ym))) ≥ ε}

where the expectation is over all values of ζ the uniform noise that B introduces.

In this case, E3 is the set of y sequence that make B chooses bad function. Clearly

(
m∏
i=1

P3|xi)(E3) = (
m∏
i=1

P2|xi)(E1)
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Let v be a random variable with distribution D. Let algorithm C be the random-

ized algorithm that adds noise Qα(v) to each y value it receives and passes the

sequence to algorithm B. that is

C(x1, y1, · · · , xm, ym) = B(x1, y1 +Qα(v1), · · · , xm, ym +Qα(vm))

let p4|xi be the distribution of Qα(f(xi))+Qα(v). From lemma 1, dTV (P4|xi , P3|xi) ≤
αv(σ) and lemma 3 implies

(
m∏
i=1

(P4|xi))(E3) ≤ (
m∏
i=1

(P3|xi))(E3) +
mαv(σ)

2
≤ Dm(E) + δ

It follows that the probability under Pm × Um
α ×Dm that x, ζ, and v satisfy

erP,f (A(x1, Qα(f(x1)) +Qα(v1) + ζ1, · · · , xm, Qα(f(xm)) +Qα(vm) + ζm)) =

erP,f (C(x1, Qα(f(x1)), · · · , xm, Qα(f(xm)))) ≥ ε (1)

is less than 2δ. Since α ≤ 2ε, for all x ∈ X, |f(x) − Qα(f(x))| ≤ ε and therefore

(1) implies

erP,Qα(f)(C(x1, Qα(f(x1)), · · · , xm, Qα(f(xm)))) < 2ε

with probability at least 1 − 2δ. This is true for any Qα(f) in Qα(F ), so this

algorithm (2ε, 2δ)-learns Qα(F ) from m examples.

3.2 Lower Bounds for Quantized learning

In the previous subsection, we showed that if a class F can be (ε, δ, σ)-learned

with a certain number of examples, then an associated class Qα(F ) of discrete-

valued functions can be (2ε, 2δ)-learned with the same number of examples. In

this subsection, we show that an algorithm for learning a class of discrete-valued

functions can effectively be used as a subroutine in an algorithm for learning

binary-valued functions. We then apply a lower bound result for binary-valued

functions.

Definition: For each d ∈ N, let POWERd be the set of all functions from

{1, · · · , d} to {0, 1}.
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Theorem 2 [3]: Let C be a nontrivial, well-behaved concept class. If the V C

dimension of C is d <∞, then for any 0 < ε < 1/2 and sample size less than

max(
1− ε
ε

ln
1

δ
, d(1− 2(ε(1− δ) + δ)))

no function A : SC → H, for any hypothesis space H, is a learning function for C.

Corollary 1: Let A be a randomized learning algorithm which always out-

puts {0, 1} valued hypothesis. If A is given fewer than d/2 examples, A fails

to (1/8, 1/8)-learn POWERd. (For proof, replace (ε, δ) = (1/8, 1/8) in Theorem

2. )

Lemma 4: Choose a set F of functions from X to Qα([0, 1]), d ∈ N and γ > 0

such that fatF (γ) ≥ d. If a randomized learning algorithm A is given fewer than

d− 400

4 + 192 ln 1/α

examples, A fails to (γ/32, 1/16)-learn F without noise.

Proof Sketch of Lemma 4: We start with the contrapositive statement and

assume that A (γ/32, 1/16)-learn F without noise. Then, we construct another

algorithm Ã that (1/8, 1/8)-learns POWERd from m + d96(ln 8 + m ln d1/αe)e
examples without noise. Then, we apply Corollary 1 and it completes the proof.

3.3 The Lower Bound

Theorem 3: Suppose F is a set of [0, 1]-valued functions defined on X, D is

an admissible noise distribution class with total variation function v, 0 < γ < 1,

0 < ε ≤ γ/65, 0 < δ ≤ 1/32, σ ∈ R+, and d ∈ N. If fatF (γ) ≥ d > 800, then any

algorithm that (ε, δ, σ)-learns F with noise D requires at least m0 examples, where

m0 > min{ d

800 ln(2 + dv(σ)/10)
,

d

800 ln(2 + d/120)
,

d

400 ln(40/γ)
}

Proof Sketch of Theorem 3: Combine Lemmas 4 and 2.

4 The Upper Bound

In this section, we present a theorem that gives an upper bound on the number of

examples required to learn a function class with noise. This will finishes the proof
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of Theorem 1. We omitted the proof since it will lengthen the report. One can

refer to [1] for the proof.

Theorem 4: For any permissible class F of functions from X to [0, 1], there is

a learning algorithm A such that, for all bounded admissible distribution classes

D with support function s, for all probability distributions P on X, and for all

0 < ε < 1/2, 0 < δ < 1 and σ > 0, if d = fatF ( ε2

576s(σ+1)
), then A(ε, δ, σ)-learns F

from
1152(1 + s(σ))4

ε4
(12d(25 + ln

d(1 + s(σ))6

ε8
)2 + ln

4

δ
)

examples with noise D.

Corrolary 2: Let F be a class of functions from X to [0, 1] . Let p be a polynomial

and suppose fatF (γ) < p(1/γ) for all 0 < γ < 1. Then for any almost-bounded

admissible distribution class D, F is small-sample learnable with noise D.

Proof Sketch for Corrolary 2: We construct a bounded distribution by cut-

ting the tail of the almost-bounded noise distribution. Then, we show that total

variation distance between these two can be made small enough so that it doesn’t

voilate the statements presented in the upper bound proof.

5 Conclusions

In this project, we consider the problem of learning real-valued functions from ran-

dom examples when the function values are corrupted with noise. With mild con-

ditions on independent observation noise, we provide characterizations of the learn-

ability of a real-valued function class in terms of a generalization of the Vapnik-

Chervonenkis dimension, the fat-shattering function, introduced by Kearns and

Schapire. We show that, given some restrictions on the noise, a function class is

learnable in our model if and only if its fat-shattering function is finite. With dif-

ferent restrictions, satisfied for example by gaussian noise, we show that a function

class is learnable from polynomially many examples if and only if its fat-shattering

function grows polynomially.
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